If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-20b-17=0
a = 1; b = -20; c = -17;
Δ = b2-4ac
Δ = -202-4·1·(-17)
Δ = 468
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{468}=\sqrt{36*13}=\sqrt{36}*\sqrt{13}=6\sqrt{13}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-6\sqrt{13}}{2*1}=\frac{20-6\sqrt{13}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+6\sqrt{13}}{2*1}=\frac{20+6\sqrt{13}}{2} $
| 2x+8=2-3x | | 11-30=m | | 2.5^n=10 | | 169=57-v | | 9=1/2(-2+5n | | 7+4=11-m-30 | | p=40(17/100p) | | 8+4x=3x+3x | | 8x+4=42x+1 | | x/3-2=x/5 | | x+5+2+2=4 | | -(2x+2)-1=-x(x+4 | | 1*2(4a-1)=1*2(2a+2) | | d-87=102 | | -(2x+2)-1=-x-(x+4 | | 63/4=z/12 | | -5n=2=-2n-10 | | 7-4x=2+x | | 3(10x)=6,000 | | 7(a+3)=45-3(12-a) | | -15=-02.k | | g+7-4=14 | | -5k+3+6k=2 | | 8x+10=40 | | 5x=-18+3 | | 7-4x=6-3x | | Ax60=120 | | 6,494.52=x+.0925x | | 5(10-36)=105-8b+4(11-4b) | | -4v+8+8v=8 | | 63+3v=12v | | 9x+3x-10=3(3x=x |